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Abstract—Automatic singing voice understanding tasks, such
as singer identification, singing voice transcription, and singing
technique classification, benefit from data-driven approaches that
utilize deep learning techniques. These approaches work well
even under the rich diversity of vocal and noisy samples owing
to their representation ability. However, the limited availability
of labeled data remains a significant obstacle to achieving
satisfactory performance. In recent years, self-supervised learning
models (SSL models) have been trained using large amounts
of unlabeled data in the field of speech processing and music
classification. By fine-tuning these models for the target tasks,
comparable performance to conventional supervised learning can
be achieved with limited training data. Therefore, in this paper,
we investigate the effectiveness of SSL models for various singing
voice recognition tasks. We report the results of experiments
comparing SSL models for three different tasks (i.e., singer
identification, singing voice transcription, and singing technique
classification) as initial exploration and aim to discuss these
findings. Experimental results show that each SSL model achieves
comparable performance and sometimes outperforms compared
to state-of-the-art methods on each task. We also conducted a
layer-wise analysis to further understand the behavior of the
SSL models.

I. INTRODUCTION

The singing voice plays an important role in the music. It
provides emotional expressions for us through its melody and
lyrics. Computational understanding tasks of singing voices,
such as singer identification, singing voice transcription, and
singing expression identification, are beneficial for many ap-
plications such as music discovery [1], pedagogy [2], musi-
cological analysis [3], etc. Processing the singing voices is
a long-running challenge in the music information retrieval
(MIR) field [4] due to its wide variation. Recently, the methods
based on deep learning outperformed the conventional methods
based on the hand-crafted manner in many singing voice
understanding tasks thanks to its intense expressiveness [5],
[6], [7], [8]. However, deep learning approaches typically
necessitate extensive datasets comprising sung tracks with
high-quality labels, entailing substantial costs for both data
collection and annotation.

Transfer learning is one of the techniques to alleviate the
requirements of large-scale datasets for the low-resource situ-
ation. It is based on the transfer of the knowledge derived from
high-resource upstream pre-training tasks to target downstream
tasks. In the audio domain, there are many works on audio

classification tasks that utilize transfer learning of PANNs
[9] and VGGish [10], which are pre-trained on a large-scale
audio dataset. Notably, transfer learning of the model that
is pre-trained by self-supervised learning (SSL) fashion is
rapidly emerging. SSL models are leveraging a vast amount
of unlabeled data, several notable models have been developed
in both the speech and music domains. In the speech domain,
these models include Wav2Vec2.0 [11], HuBERT [12], and
WavLM [13]. Meanwhile, in the music domain, models such
as MERT [14], and MapMusic2Vec [15] have been introduced.

Singing voice encompasses characteristics of both speech
and music, and researchers have explored leveraging pre-
trained SSL models in singing voice understanding tasks [16],
[17], [18], [19] for each. The transfer learning of pre-trained
SSL models from the speech or music domains to the singing
domain holds potential. However, there is still ample room
for investigating the utility of each pre-trained SSL model.
This includes investigating which domains can contribute to
singing voice understanding tasks, how the model extracts
valuable features for the target tasks, and how to fully utilize
the potential of the SSL models, and so on.

In this study, our objective is to examine the usefulness
of SSL models pre-trained on the speech or music domains
for singing voice understanding tasks. To achieve this, we
employ pre-trained SSL models as a front-end to our voice
identification model and evaluate their performance through
fine-tuning.

We present the following contributions in this study:
1) Comparative analysis of SSL models: We compare mul-

tiple SSL models across three distinct three tasks: singer
identification, singing voice transcription, and singing
technique classification, corresponding to ”Who sings?”,
”What song?”, and ”How to sing?”, respectively.

2) Comparison with SoTA models: We also compared
the SSL models with state-of-the-art (SoTA) models.
Through fine-tuning the pre-trained SSL models, we
demonstrate that they achieve performance comparable
to that of current state-of-the-art methods in several
singing voice understanding tasks.

3) Investigation of layer-wise behavior: Additionally, we
delve deeper into the behavior of the model’s layers
and analyze their characteristics across different tasks,



by utilizing learnable weight for each layer.

II. RELATED WORKS

Various machine learning approaches have been explored
for low-resource problems in the singing voice understanding
tasks. Semi-supervised learning [20], [21], data augmentation
[22], [23], and self-supervised learning on singing voices [24],
[25], leveraging speech data [26], [27] etc. have been proposed
to mitigate the drawbacks of supervised-learning fashion.

More recent, pre-trained self-supervised models are used
for singing understanding tasks. Ou et al. leveraged Wav2Vec
2.0 [11] model that is pre-trained using Librispeech corpus
[28] and fine-tuned automatic speech recognition for lyric
transcription. They achieved comparable performance with
the state-of-the-art performance of lyric transcription methods
[29], [30], which are learned from over 150 hours of data,
by using its 10% of amount (i.e., 15 hours) [16]. Gu et
al. leveraged Wav2Vec2.0 for singing voice transcription and
outperformed conventional works [18]. Heydari et al. tackled
singing beat tracking, which is a beat tracking method when
the input is only a singing voice. They leverage WavLM [13]
and DistilHuBERT [31] for the frontend of the model, and
they outperformed the model that adapts only the spectrogram
for the frontend feature. Donahue et al. proposed melody
transcription from the musical mixture utilizing codified music
representation [32] derived from the hidden representation of
JukeBox [33], which is originally proposed for musical audio
generation.

III. METHODS

We compare four SSL models: 1) Wav2Vec2.0 [11], 2)
WavLM [13], 3) MERT [14], and 4) MapMusic2Vec [15]. Each
model takes a raw waveform as input and employs convolu-
tional layers for feature extraction along with 12 Transformer
encoder layers. The output of each model consists of a 768-
dimensional vector per frame. We utilized these models as the
frontend for each singing voice understanding task.

A. SSL models
1) Wav2Vec2.0: Wav2Vec2.0 [11] is the model that has

convolutional and Transformer Encoder layers and acquired
speech representation through contrastive learning and mask-
ing. It takes raw speech waveforms as input, and the initial
convolutional layers produce latent representations denoted as
z. To facilitate contrastive learning, the quantization module
is applied to convert z into discrete representations denoted
as Q. Simultaneously, z is fed into the Transformer layers
after applying random masking to several frames. The output
feature C is then derived from the Transformer layers. Finally,
contrast learning is performed masked time step in C and Q.
Here, the same time steps are considered as positive examples
and different time steps are considered as negative examples.
Wav2Vec2.0 has shown its effectiveness in several downstream
speech tasks by fine-tuning [34], [35], [36]. We used the
Wav2Vec2.0 Base model1.

1https://huggingface.co/facebook/wav2vec2-base-960h

Fig. 1. The concept of this paper. 1) Pre-training on upstream task: Utilizing
a vast amount of unlabeled data (either speech or music) and pre-training the
model in a self-supervised fashion. 2) Transfer learning for downstream task:
Leveraging pre-trained model and solving the target task (i.e., singing voice
understanding tasks).

2) WavLM: WavLM [13] is a large-scale pre-trained model
with 94k hours of speech data as input that can treat full-stack
speech processing. It adopts masked prediction of hidden units
like HuBERT [12] and denoising of the input speech as self-
supervised pretraining. The diversity of the pre-trained corpus
of WavLM is wider than that of Wav2Vec2.0; Gigaspeech
[37], a collection of audiobooks, podcasts, and YouTube and
VoxPopli[38], a collection of European Parliament, in addition
to Librispeech. We used the Wav2Vec2.0 Base plus model,
which demonstrates better performance than the Base model2.

3) MERT: MERT [14] is a large-scale pre-trained model
using unlabeled music data. It is also inspired by masked
prediction of hidden units as WavLM while it uses CQT
spectrogram as its target in addition to quantized acoustic
features with the purpose of enhancing the pitch representative
power. It can achieve the parameter efficiency compared to the
JukeMIR [32], the musical audio representation derived from
JukeBox. We used the public-v0 model3, which is only trained
on a public music dataset.

4) MapMusic2Vec: MapMusic2Vec4 [15] is a model that is
pre-trained using BYOL [39] with 1k hours of music data. It
relies on two neural networks that have the same structure as
each other, reffed to the teacher model and the student model.
The parameters of the teacher model are updated according to
the exponential moving average (EMA) of the student model.
The student model takes partially masked audio raw waveform
as input while the teacher model takes unmasked one and
outputs the prediction of hidden outputs from the last K layers
of the teacher model.

2https://huggingface.co/microsoft/wavlm-base-plus
3https://huggingface.co/m-a-p/MERT-v0-public
4https://huggingface.co/m-a-p/music2vec-v1
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Fig. 2. The overview of the whole model to solve the target tasks.

B. Downstream model

We describe the overview of how to use the SSL model and
the downstream models in Figure 2.

1) Weighted sum: We employed a weighted sum of the
outputs from each Transformer encoder layer, including the
input of the first layer, as the input for the downstream model.
This approach was motivated by previous works (e.g.,[40],
[41], [42], [43]) that have demonstrated different aspects of
the input being captured by early, intermediate, and late layers
of Transformer models. By using a weighted sum, we aimed to
fully leverage the potential of SSL models. We set 13 learnable
weight values, each corresponding to the weight value assigned
to the output of each layer.

2) Classifier: Given the aforementioned features, we use a
linear downstream model to predict each. The way of deriving
the output of the target is depending on the tasks; For singing
voice transcription, we directly used the frame-wise output. For
the classification tasks (i.e., singer identification and singing
technique classification), the feature is mean-pooled over the
time axis to derive a clip-wise output.

C. Fine-tuning

In order to solve the downstream tasks, we fine-tune the
models. There are various strategies for fine-tuning large-scale
pre-trained models, we follow the two-stage training as Gu et
al. [18] did. First, we freeze the parameter of the SSL models
and make them learnable only on downstream models (i.e., the
value of the weighted sum and the linear model). After several
epochs, we unfreeze the Transformer encoders and fine-tune
them.

IV. EXPERIMENTS AND RESULTS

A. Experiment on Singer Identification

Singer identification is the classification task that identifies
who is singing in a given sung audio clip.

1) Experimental Condition: We demonstrate 20-way singer
identification using Artist20 [44] dataset, which collects 20
singers’ music tracks. The dataset contains six albums for each
singer in the data set, for a total of 1,413 songs. We split the
dataset per album in order to avoid the leakage of production

information about an album over the training and test set.
We assign four albums for train, one album for validation,
and the rest one album for test subset. Since the audio clips
of the dataset include accompaniment of musical instruments,
we applied vocal separation using Demucs V4 [45]. Then, we
split them into five-second chunks without overlapping at a
sample rate of 16kHz and discarded non-vocal chunks by RMS
filtering [17].

For training the models, we used Adam optimizer [46] with
30 epochs. We set the learning rate of 3 × 10−3 for the first
stage on the first six epochs and 5×10−5 for the second stage
with the remaining epochs. The batch size is set to 32.

We evaluated the models by the following metrics: F1-score,
Top-2 accuracy, and Top-3 accuracy. For the baseline for the
comparison, we adopt the CRNN model by Hsieh et al.[23].
The model takes a 128-dimensional mel spectrogram as input
and consists of four convolutional layers and two GRU [47]
layers. We re-implemented the model in order to measure Top-
2 and Top-3 accuracy since [23] only reported F1-score.

2) Results: Table I shows the results of singer identification.
SSL models are demonstrating superior performance compared
to the conventional SoTA model (i.e., CRNN) of singer identi-
fication. Notably, WavLM exhibited the highest performance in
terms of F1 score, while MapMusic2Vec excelled in achieving
the highest accuracy for Top-2 and Top-3 accuracy. These
outcomes collectively suggest that the pre-training of SSL
models with either music or speech data is leveraged in
encoding the information associated with the singers.

TABLE I
THE RESULTS OF SINGER IDENTIFICATION.

Methods F1-score Top-2 Top-3
Wav2Vec2.0 60.0 70.7 76.3
WavLM 61.9 70.2 76.4
MERT 56.8 68.4 75.6
MapMusic2Vec 59.6 71.5 77.0
CRNN [23] 49.5 63.4 71.3

B. Experiment on Singing Voice Transcription

Singing voice transcription refers to the process of convert-
ing sung audio signals into corresponding musical notes. In
this paper, we employed the piano roll representation as the
target for the singing voice transcription.

1) Problem Definition: We follow the settings of Wang et al.
[48]. The target has four attributes: onset, silence, pitch class,
and octave. The beginning of silence is considered as the offset
instead of a direct estimation of them due to its difficulty. We
set the pitch range from C2 (MIDI number 36, 65.41Hz) to B5
(MIDI number 83, 987.77Hz), therefore the target of octave
is four classes (i.e., 2-5.) In addition, the class of inactive is
added on octave and pitch class, respectively. Eventually, each
frame contains 20-dimensional vectors as a target (i.e., onset
and silence are binary, pitch class is five classes, and octave
is 13 classes).
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2) Experimental Condition: We use MIR-ST500 [48],
which consists of 500 Chinese pop songs with manually
annotated vocal melody notes. The authors of [48] provide
the official data split that allocates 400 songs for the training
set and 100 songs for the test set. Therefore, we followed
the split as is, using the training set for the model training
and the test set for the evaluation. Since the audio clips of
the dataset include accompaniment of musical instruments, we
applied vocal separation using Demucs V4 [45]. During the
training of the model, we split the input audio into five-second
chunks without overlaps at a sample rate of 16kHz. Given the
input, the model outputs the prediction of the aforementioned
20-dimensional target vector per frame. The frame length is
about 20ms. Suppose the prediction for onset, silence, pitch
class and octave are Ô, Ŝ, P̂ , V̂ , the objective functions are as
follows:

Lsvt =
1

T

T∑
t=1

[
BCE(σ(Ôt), Ot, wo) +BCE(σ(Ŝt), St, ws)

+CE(P̂t, Pt) + CE(V̂t, Vt)
]

(1)

Where T denotes the number of frames in the input, σ(·)
denotes the sigmoid function, BCE denotes binary cross-
entropy loss, and CE denotes cross-entropy loss. Considering
the imbalance between positive and negative samples, the
weight is applied to the binary cross entropy loss. The values
are wo = 15.0 for onset, and ws = 1.0 for silence, respectively.
For training the models, we used Adam optimizer [46] with
30 epochs. We set the learning rate of 3 × 10−3 for the first
stage and 5× 10−5 for the second stage.

We follow the strategy of postprocessing as Gu et al. [18]
for deriving the actual estimation. Briefly, each of the note
properties is determined as follows:

• onset: Setting a threshold value of 0.4. If the prediction
value is higher than the threshold and the local maximum,
the frame is set to onset.

• offset: arg min(Ŝt > 0.5) of the estimated silence se-
quence and after the onset time.

• pitch class and octave (i.e., midi number): Assign the
mode of the estimated value between the onset and the
offset time.

To evaluate the performance of our model, we adopted three
evaluation metrics proposed in [49], namely F1-score of COn
(correct onset), COnP (correct onset and pitch), and COnPOff
(correct onset, offset, and pitch). We utilized the mir eval
library to calculate these metrics, using the default parameters:
50 cents for pitch tolerance, 50 ms for onset tolerance, and the
larger value between 50 ms and 0.2 of the note duration for
offset tolerance.

In order to establish baselines for comparison, we considered
several conventional works:

1) EfficientNet-b0: This approach is based on utilizing
the EfficientNet-b0 model [50], which was originally
proposed as the baseline for the MIR-ST500 task [48].

2) JDCnote: This model was trained on pseudo-labeled data
obtained through quantization of automatically detected
vocal melody contours [51].

3) Wav2Vec2-Large: This model employed the
Wav2Vec2.0-Large model for the frontend and feeds
only the last layer’s output to the downstream model
[18].

3) Results: Table II shows the results of singing voice
transcription. MERT achieved the best score on COn and
COnP among the four SSL models, while MapMusic2Vec
demonstrated the best score on COnPOff. We observed that
the speech models (i.e., Wav2Vec2.0 and WavLM) exhibit
lower COnP compared to the music models (i.e., MERT
and MapMusic2Vec). It suggests that the music models have
already acquired the representation related to musical notes
while the speech models lack such incorporation due to the
gap between speech and singing voice (i.e., the length of
stable pitch region, musical expression, etc.). In terms of
performance comparisons with conventional works, every SSL
model showed comparable performance with [48] and [51].
In addition, MERT outperforms Wav2Vec2Large in the COnP
with fewer parameters.

TABLE II
RESULTS OF SINGING VOICE TRANSCRIPTION. ALL VALUES ARE

EXPRESSED IN %. THE BEST-PERFORMING CONDITION AMONG ALL
CONDITIONS IS HIGHLIGHTED IN BOLD, AND THE BEST-PERFORMING

CONDITION AMONG SSL MODELS IS UNDERLINED.

Methods COnPOff COnP COn
Wav2vec2.0 44.8 67.0 76.3
WavLM 44.4 67.3 76.9
MERT 46.7 71.6 78.2
MapMusic2Vec 50.7 70.0 77.9
EfficientNet-b0 [48] 45.8 66.6 75.4
JDCnote [51] 42.2 69.7 76.2
Wav2Vec2-Large [18] 52.4 70.7 78.3

C. Experiment on Singing Technique Classification

Singing technique classification is the task that identifies a
singing technique that appeared in a given input audio clip.

1) Experimental condition: We used VocalSet [52], which
is a publicly available dataset that annotated singing tech-
niques. VocalSet contains singing voices by 20 different pro-
fessional singers (9 female and 11 male), performing 17
different singing techniques in various contexts. We selected
ten techniques (“belt,” “breathy,” “inhaled singing,” “lip trill,”
“spoken excerpt,” “straight tone,” “trill,” “trillo,” “vibrato,” and
“vocal fry”) by all singers for the classification. We used the
officially provided data split: 15 singers for the training set
and 5 singers for the test set. We trimmed the silence from the
audio and split it into non-overlapping chunks of 3 seconds.
Typically the sampling rate of the audio tracks of VocalSet is
44.1kHz, the audio is resampled to 16kHz. For training the
models, we used Adam optimizer [46] with 20 epochs. We set
the learning rate of 3×10−3 for the first stage on the first five
epochs and 5× 10−5 for the second stage with the remaining
epochs. The batch size is set to 16.
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TABLE III
SELECTED SAMPLES FROM VOCALSET.

Label name Type of fluctuation Samples #
straight None 1241
belt Timbre 423
breathy Timbre 455
vocal fry Timbre, Modulation 587
vibrato Modulation 1034
trill Modulation 323
trillo Modulation 242
lip trill Modulation 376
inhaled Other 151
spoken Other 73

The data distribution of VocalSet is imbalanced over the
classes that affect the classification performance [53]. There-
fore, we adopt the inverse frequency weight for the loss
function. The typical weight value wc for the class c is as
follows:

wc =
1

(nc)α
(2)

where nc is the number of training samples in class c, and α is
the smoothing factor, which controls the smoothing of the loss
weights. Note that α = 0 corresponds to the value of 1 (i.e.,
no weighting) and α = 1 corresponds to a reciprocal number
(i.e., weighting by the inverse class frequency). We set α =
0.2, which performed the best score in [53]. We evaluated the
models by the following metrics: F1-score, Accuracy, Balanced
accuracy, Top-2 accuracy, and Top-3 accuracy. We consider
several conventional works as baselines.

1) 1DCNN: This model utilizes a CNN architecture that
directly takes raw waveform as inputs. It serves as the
official baseline model of the Vocalset dataset [52].

2) OblongCNN: This model employs a CNN architecture
that takes a multi-resolution spectrogram, consisting
of stacked representations with three different time-
frequency resolutions as input. Additionally, it incorpo-
rates four convolutional layers of varying shapes [8].

3) D-CNN-cRT: This model replaces the standard convolu-
tional layers with Deformable convolution and employs
Classifier Retraining (cRT) [54] for training with a focus
on addressing class imbalance [53].

2) Results: Table IV shows the results of singing technique
classification. MapMusic2Vec exhibits the best performance in
four SSL models and comparable performance to other conven-
tional approaches. It also achieved higher accuracy compared
to the best-performing method among the conventional works,
D-CNN-cRT.

D. Layer-wise contribution analysis

We further analyze the weight of each encoder layer’s
output for each SSL model. Figure 3, 4, and 5 show the
weights after training on singer identification, singing voice
transcription, and singing technique classification, respectively.
In each figure, ‘Ln’ denotes the weight of the n-th encoder
layer’s output (i.e., L0 is for the input of the first layer.).

TABLE IV
THE RESULTS OF SINGING TECHNIQUE CLASSIFICATION.

Methods F1 Acc BAcc Top-2 Top-3
Wav2Vec2.0 56.1 58.3 60.1 74.8 82.1
WavLM 55.6 60.8 57.9 75.3 83.8
MERT 54.1 58.5 58.5 76.1 85.3
MapMusic2Vec 60.8 66.0 62.1 79.0 86.9
1DCNN [52] 48.8 58.4 48.4 76.4 86.3
OblongCNN [8] 51.3 55.4 57.5 74.3 85.8
D-CNN-cRT [53] 62.0 65.6 65.5 81.5 88.7

For singer identification, the strong contribution lies in the
early layers of each SSL model. This finding aligns with
previous research investigating the layer-wise contribution in
various speech-related tasks, such as those presented in several
works [13], [55]. These studies suggest that speaker-related
information tends to be captured in the early layers of the
models. Consequently, it can be inferred that a similar pattern
holds true for singers, indicating that the crucial information
for singer identification is also encoded in the early layers of
the SSL models.

For singing voice transcription, except for MERT, the con-
tribution also tends to lie in the early layers of each SSL
model. According to [41], low-level prosodic features such
as pitch or loudness tend to locate the early layers of speech
SSL models. Since pitch information is the most important for
singing voice transcription, the results that align with the work
are unsurprising. In the case of MERT, CQT spectrogram is
utilized as a prediction target. Therefore, it is plausible that
the last layers of MERT contain pitch-related information. As
several works [56], [57] reported, singing voice transcription is
relating the information of phonemes as well as the pitch (i.e.,
onsets are often accompanied by the transition of the lyrics).
It might cause this ”unsmooth-shaped” distribution compared
to other tasks.

In the case of singing technique classification, the early
layers exhibit greater values compared to other layers in each
model. Specifically, the first layer holds the greatest signifi-
cance. It might be because singing techniques are influenced by
pitch modulation and timbre variation. However, there is also
a possibility that it is affected by the data imbalance where
vibrato and straight, whose characteristics are the status of
pitch modulation, are the majority classes.

V. CONCLUSION

In this study, we address the challenge of limited data
availability in singing voice understanding tasks by leveraging
transfer learning of pre-trained self-supervised (SSL) models.
We employ four different SSL models as the frontend of our
target task model. The models are subjected to comprehen-
sive experiments encompassing singer identification, singing
voice transcription, and singing technique classification. Our
experimental results demonstrate that each SSL model achieves
comparable and in some cases superior, performance when
compared to conventional state-of-the-art models. Additionally,
we conduct layer-wise analysis to inspect the behaviors, specif-
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Fig. 3. The weights after training on singer identification.

Fig. 4. The weights after training on singing voice transcription.

ically analyzing the weights of each layer. Moving forward,
our future research endeavors will focus on further investi-
gating the impact of feature representation in addressing the
data scarcity issue in automatic singing voice understanding
tasks. Furthermore, we propose that future studies can explore
other singing voice understanding tasks, such as vocal melody
extraction [58], lyric transcription [59], and singer diarization
[60], among others, to expand the scope of research in this
domain.
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